Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis.
نویسندگان
چکیده
To investigate the membrane pore structure of Cyt2Aa1 toxin from Bacillus thuringiensis, 14 single-cysteine substitutions of the toxin were constructed. Five of these mutants (L172C, V186C, L189C, E214C and L220C) yielded characteristic products when processed by proteinase K; other mutants were degraded by this enzyme. Mutants that yielded characteristic proteolysed products and wild-type toxin were labelled with polarity-sensitive acrylodan (6-acryloyl-2-dimethylaminonaphthalene) at the thiol group of cysteine residues. A green-blue shift in the emission spectra was observed with all labelled toxins on transfer from an aqueous solution into a solution containing membranes or liposomes from red blood cells. These results suggested that the label moved into the hydrophobic environment of the membrane or became buried within hydrophobic regions of the protein oligomers. Digestion of membrane-bound labelled toxin with proteinase K did not cause a significant decrease in emission intensity from any of the labelled mutants. This suggests that L172C, V186C, L189C, E214C and L220C are inserted into the membrane and are therefore protected from proteolysis. In contrast, a marked decrease in emission intensity was observed when membrane-bound labelled wild-type toxin was digested with proteinase K. This suggests that Cys-19 does not insert into the membrane. Fluorimetric analysis of delipidated pore complexes suggests that L172C, V186C, L189C and E214C point towards the lipid in the membrane, whereas L220C is either within the hydrophobic environment of the protein oligomers or exposed to the membrane lipids. Most of the Cys-19 from wild-type molecules is enclosed within the hydrophobic pockets of the protein oligomers.
منابع مشابه
Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin.
The Bacillus thuringiensis var. israelensis (Bti) cytolytic toxin is hypothesized to exert its toxic activity via pore formation in the cell membrane as a result of the aggregation of several monomers. To gain insight into the toxin's mode of action, 2 putative hydrophobic 22 amino acid peptides were synthesized and characterized spectroscopically and functionally. One peptide corresponded to t...
متن کاملBacillus thuringiensis Cyt2Aa2 toxin disrupts cell membranes by forming large protein aggregates
Bacillus thuringiensis (Bt) Cyt2Aa2 showed toxicity against Dipteran insect larvae and in vitro lysis activity on several cells. It has potential applications in the biological control of insect larvae. Although pore-forming and/or detergent-like mechanisms were proposed, the mechanism underlying cytolytic activity remains unclear. Analysis of the haemolytic activity of Cyt2Aa2 with osmotic sta...
متن کاملSingle molecule fluorescence study of the Bacillus thuringiensis toxin Cry1Aa reveals tetramerization.
Pore-forming toxins constitute a class of potent virulence factors that attack their host membrane in a two- or three-step mechanism. After binding to the membrane, often aided by specific receptors, they form pores in the membrane. Pore formation either unfolds a cytolytic activity in itself or provides a pathway to introduce enzymes into the cells that act upon intracellular proteins. The elu...
متن کاملStructural Basis of Pore Formation by Mosquito-larvicidal Proteins from Bacillus thuringiensis
The insecticidal character of the three-domain Cry -endotoxins produced by Bacillus thuringiensis during sporulation is believed to be caused by their capability to generate lytic pores in the target larval midgut cell membranes. This review describes toxic mechanisms with emphasis on the structural basis of pore formation by two closely related dipteran-specific toxins, Cry4Aa and Cry4Ba, whic...
متن کاملSHORT COMMUNICATION INHIBITION OF POTASSIUM-GRADffiNT-DRIVEN PHENYLALANINE UPTAKE IN LARVAL LYMANTRIA DISPAR MIDGUT BY TWO BACILLUS THURINGIENSIS DELTA- ENDOTOXINS CORRELATES WITH THE ACTIVITY OF THE TOXINS AS GYPSY MOTH LARVICIDES
During speculation, Bacillus thuringiensis produces parasporal inclusions with insecticidal activity. The parasporal inclusions produced by most subspecies of B. thuringiensis are active only against the larvae of a few lepidopteran insects. Lepidopteran-active parasporal inclusions are usually bipyramidal crystals composed of one or more 130x lCP-l^Ox 10 Mr polypeptides. These polypeptides are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 350 Pt 1 شماره
صفحات -
تاریخ انتشار 2000